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Abstract

This paper studies the problem of highly deformable
generalized cylinders real-time rendering. Some efficient
schemes for high axis curvature detection are presented,
as well as an incremental non-uniform sampling process.
We also show how the recent 3D card ”skinning” feature,
classical in character animation, can be derived in order to
allow for very high frame-rate when rendering such gener-
alized cylinders. Finally, an algorithm is presented, that
permits the object to dynamically adapt its display pro-
cess, for guaranteed frame-rate purposes. This algorithm
dynamically modifies the different sampling parameters in
order to achieve optimal quality visualization for a given
pre-imposed frame-rate.

1. Introduction

Widely used in computer graphics modeling, generalized
cylinders are now quite commonly used. Since their origi-
nal definition [3], several declinations of the original model
have been presented, and extensively studied [8, 9, 14, 19].
One major advantage of such a model is that a 3D shape
is conceptually simplified into several 1d-curves, and the
process of such a shape design, simplified to several 1d-
function definition [8]. This allows for efficient design of
topologically simple objects. One of the major problems
often encountered with such models is that of conversion
to polygonal approximation (this process is calledtessel-
lation), e.g. for further real-time visualization. It is well
known that simple poly-line extrusion raises tessellation
problems for high-curvature points (see Figure 1 for an ex-
ample of it).

This comes from two main problems when handling
high-curvature points on the cylinder axis: first, it may oc-
cur that the sharp angle is simply missed in the sampling.
The second problem is the fact that tessellated sections
can overlap, hence providing the user with self-intersecting

Figure 1. classical uniform tessellation of a
simple generalized cylinder. Top-left: zoom
on axis high-curvature area.

mesh (see figure 2 for illustration of those two problems).
This paper presents three contributions to the problem

of high-performance visualization of such objects: first, we
present an incremental technique for non-uniform sampling
of the cylinder axis. Second, we introduce another way of
constructing the polygonal approximation used for fast vi-
sualization. Last, we present an algorithm that allows for
the rendering process to adapt itself to a specific frame rate,
which can be quite useful when designing graphically com-
plex applications that might possibly be executed on a com-
puter with limited rendering possibilities.

The paper is organized as follows: section 2 defines the
notation used in this paper, as well as classical techniques
for high-curvature detection along the axis, and general-
ized cylinder rendering. Section 3 presents our incremen-
tal solution for adaptive sampling of the axis. Section 4
shows how hardware-based skinning can be extended to a
subclass of generalized cylinders, and significantly reduce
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Figure 2. classical tessellation problems on
generalized cylinders. Top line: inadequate
sweep tessellation (left) and correct one
(right). Bottom line: mesh self-intersection
when deforming initial sweep.

the software-side computation, to the benefit of hardware-
side, in the global rendering process. Section 5 discusses the
guaranteed frame rate constraint, and presents a technique
to automatically adapt the different parameters of the dis-
play process so that rendering respects a given frame rate.
Finally, in section 6, some results, along with measures, are
presented.

2. Generalized Cylinders

We do not plan to completely define sweeps, as they
are quite a classical graphics modeling tool. We refer the
reader to [8] for a classification, and extensive terms defi-
nition. In this section, we first simply set the notations we
will use in this article, and give the limitation of the tech-
niques described in this article. Second, we present classi-
cal techniques of sweep tessellation, including non-uniform
axis sampling, and multiresolution techniques.

2.1. Definition and limitations

A generalized cylinderG is primarily defined by two
simple analytic objects: an axisC(u) (an arbitrary param-

eterized curve, e.g. a spline, or subdivision curve) and a
cross section functionS(u), a planar shape the definition
of which depends on theu value. For each value ofu, the
intersection ofG with the plane orthogonal to curveC is
exactly the cross sectionS(u). We will refer to rotational
primitives as the special objects whereS(u) is isotropic,
i.e. equivalent to a circle of radiusr(u) (which is called
profile function). Twists defineG using a rotation of angle
θ(u) (this function is the twisting function) around the first
derivative vectorC ′(u) direction, that is applied to an initial
cross section curveS to giveS(u) (see e.g. [10] for simple
examples). Interpolational cross-section objects are objects
for which cross-sections are defined using key sections de-
fined for key parameter values. Intermediate sections are
generated as interpolation between the key cross sections
[10].

Our work is primarily devoted to the (somewhat classi-
cal) case whereS(u) can be seen as the image of an orig-
inal sectionS, combined with a profile curver(u), and a
twisting functionθ(u). Sampling technique can be general-
ized to interpolational objects, but hardware based render-
ing technique as described in this article is not correct any-
more for such generalized cylinders (see section 4 for pre-
cise explanation of such a limitation). For the remainder of
this article, we hence consider that our sweep is constructed
using an axisC(u), a cross-sectionS, a profile curver(u),
and a twisting functionθ(u) .

2.2. Classical tessellation process and axis sampling
techniques

Classical sweep tessellation process involves an itera-
tive treatment. Some polygonal approximations of cross-
sectionsS(u) are created for several keyu values, and two
consecutive sections generate a stripset mesh information,
that locally approximates the sweep. The core point of such
a process is the question of the positioning of the key frames
along the axis. Bloomenthal [6] presents efficient numeri-
cal techniques for calculating the reference points, and get
rid of hypothetical twists of Frenet basis around the axis,
that could introduce undesired and uncontrolled twists on
the resulting object. The other point, about key frames
positioning, is the selection of adequate parameteru val-
ues, in order to position the sampling points along the axis.
Typically, it involves studying the analytic structure of axis
C(u), in order to isolate maximal curvature points, and give
proper tessellation of the sweep. Spline curves are quite
a common way to achieve axis definition [19]. For such
analytic structures, many different tools exist in regard of
high-curvature point isolation: interval analysis [22, 17, 4],
symbolic root-isolation [11], wavelet decomposition using
semi-orthogonal or biorthogonal B-spline multiresolution
analysis [18, 16]. Apart from simple oversampling, inter-



val analysis provides quite an efficient way for fast parti-
tioning of curve into parts of different interests in regard
of curvature [4]. Symbolic root finding is also efficient in
spline context: in most cases, spline basis functions are
low degree piece-wise polynomials, or rational polynomi-
als, and are good candidates for such numerical techniques.
Wavelets provide a good theoretical framework for curve
analysis, they are very flexible, and are a good way to de-
tect high-curvature points. Yet, they are quite computation
expensive, and not affordable in a high-performance render-
ing framework. Moreover, only B-splines and NURBS are
provided with such tools, what makes it not available for all
spline models. Some heuristic techniques have to be found
for determining which point can be ignored when willing
to simplify a curve, and the determination of such heuristic
is more or less simple, depending on the B-spline structure
one uses (we refer the reader to [16, 15] for a more detailed
explanation of this technical point).

It is to note that curves defined using subdivision pro-
cesses can somewhat take advantage of the same tools as
splines, as it is possible, using theoretical impulse response
of the subdivision filters, to consider subdivision curves in
a formalism quite similar to that of splines.

Next section discusses the algorithm we used for ef-
ficient spline high-curvature detection, and the associated
axis sampling process.

3. High curvature detection and adaptive sam-
pling

The underlying idea behind the sampling process we dis-
cuss here is somewhat fairly simple. Most interesting spline
models have the regularity property [21]. This analytic
property has among its consequences that no undesired os-
cillation appears in a given spline segment. In other words,
a curve overall shape can somewhat be pre-determined by
studying the spline control points configuration. In this sec-
tion, we consider a spline axisC. In our tests, we used
uniform cubic B-spline axis, but most of the technique can
be easily generalized to many other spline cases, as most
of the spline properties used remain available for most of
classical models.

3.1. Algorithm description

the sampling process uses the control points sequence
(P0, P1, . . . , Pn) of C, the corresponding key parameter
values (u0, u1, . . . , un) (e.g. knot vector for B-splines
model), and some threshold valueε, as entry variables. The
sampling algorithm is split into two steps:

• A sequence of scalar values{ci}i=0...n is defined using
(in the following equation the notation. stands for the

standard euclidian scalar vector product):

ci = −−−−→
Pi−1Pi.

−−−−→
PiPi+1

This sequence is then normalized:

∀i, ci ←− ci

maxk=0...n(|ck|)
.

Extremal indexi values are treated using ghost points
defined using Bessel technique [12]. Each spline seg-
ment connection is hence associated to a numerical
valueci that measures the local control point ”pertur-
bation”. It is to note that, depending on the spline
model one uses, extremal indices for the{ci}i=0...n

sequence might have to be slightly modified (e.g. ex-
tremal B-splines): such possible modifications can be
easily done without loss of generality. Figure 3 shows
a visual evaluation of this step, associating different
color to each segment, depending on the numerical val-
ues obtained for scalar product.

Figure 3. An example of spline segment col-
oration using our curvature isolation process,
during interactive sweep deformation. Darker
segments correspond to those that the algo-
rithm selects as high curvature ones.

• For all the parameter segments[ui, ui+1], if |ci| < ε
and |ci+1| < ε, then the spline segment[ui, ui+1] is
treated as a whole axis sample by display (see section
4.2 for details about this treatment). In any other case,
a symbolic root extraction is performed. In the case
of uniform cubic B-splines, the maximal curvature pa-
rameter point on a segment satisfies to a linear equa-
tion. For all piecewise polynomial splines, such an



equation can be written; in most practical cases, the
polynomial spline degree is low enough so that such
equation can be solved symbolically. Once this max-
imal curvaturemi parameter point is calculated, then
the parameter segments[ui,mi] and[mi, ui+1] are dis-
played, according to the technique described in section
4.2.

3.2. Comments

The regularity property ensures that high curvature seg-
ments are detected within the first pass of the process. It
only involves simple and fast computation, and fits require-
ment for real-time computation. The second pass posi-
tions sampling points where necessary, in order to solve the
problems mentioned on Figure 2. This sampling process
is somewhat quite similar to that described in [11]. The
main difference lies in the simplification done in order to
have high-performance, relaxing theoretical validations of
the sampling scheme: in particular, our scheme does not
guarantee the minimality of the sample number in regard of
any error criteria. It simply ensures that no high curvature
point will be missed. This process makes that a spline is
turned into a set of particularized points along the curve: all
the parameter values corresponding to segment extremities,
and additional parameter valuesmi where high-curvature
has been isolated. the resulting parameter segments are
displayed using hardware-based technique, described in the
next section.

4. Hardware based rendering using skinning

The tessellation technique we use is based on the skin-
ning extension of most recent 3D cards [2].

4.1. Skinning principle

This OpenGL extension (sometimes calledvertex blend-
ing) is classically devoted to character deformation, and is
presented by classical documentation as a tool that allows
for continuous deformation of a mesh defined as a skin over
an animated skeleton. The principle of this extension is the
following: it is classical to define a simple geometric trans-
formation, using some 4x4 matrix, that defines a composi-
tion of rotation, translation, and scale, and allows for an ini-
tial mesh to be positioned anywhere within a given scene,
along with simple deformations. Skinning uses, for an ob-
ject, two matrices (i.e. two different positions of the object),
and for all the vertices of the object, a scalar value (called
weight) that is used to interpolate the vertex position. Pre-
cisely speaking, given an initial vertexν0, of weightω(ν0),
and two transformationsM1 andM2, the resulting position

ν of the vertex that is used for display is given by :

ν = ω(ν0)M1ν
0 + [1− ω(ν0)]M2ν

0

.
Such transformation is done by hardware, given the two

matrices for a given mesh, and the weights for the mesh ver-
tices. No CPU computation is involved in this process. Set-
ting optimal weights for a given deformation is, in general, a
difficult question. Bloomenthal presents a technique for au-
tomatically setting weights when skinning is used to charac-
ter animation [7]. Such a transformation process allows for
simple deformation of initial mesh. Figure 4 shows a simple
2D example of what is obtained using initial rectangle de-
formation, using weights that only depend on the positionz
along the rectangle axis. On this figure, the weight function
has the same structure as blending functions described for
other purposes in [5]. Controlling the weight distribution
curve gives control on the way the 3D card will interpolate
from the first transformation to the other.

Figure 4. Simple skinning application to a
simple polygonal primitive. Combination of
M1 and M2 geometric transformations on
the object on top-left, using the weights of
bottom-left side, gives the result drawn in
bold (right).

4.2. Adaptation to generalized cylinders visualiza-
tion

Such a definition gives quite powerful tessellation ele-
mentary cell: as we are interested in generalized cylinders
defined using a constant profile (see section 2.1), we can
use a more complex tessellation primitive than traditional
polygon. Figure 5 shows a 3D example of tessellation el-
ementary cell: those deformed cylinders are generated us-
ing a constant, linear, cylinder, and weight function similar
to that of figure 4; onlyM2 transformation matrix varies
throughout the deformations. It is important to note that



Figure 5. Example of tessellation primitive
(simple rectilinear cylinder) combined with
different M2 transformations using vertex
blending. Picture extracted from [2].

all those deformations are generated using exactly the same
initial cylinder.

In the general case, when the profile is not a circle, we
use as display primitive a linear extrusion of the initial pro-
file. Combining this simple, precalculated, shape with the
deformation process described above allows us to signifi-
cantly reduce the software side of the tessellation process,
and reduce it to transformation matrices computation. This
is the key point in our tessellation process, described in de-
tails below. The overall tessellation algorithm can be seen
as follows:

• the sampling process (see section 3) gives a set of pa-
rameter intervals.

• for each of the intervals generated by algorithm de-
scribed in section 3, two frames (one for each segment
extremity) are calculated along the axisC, using tools
given in [6]. Each frame gives local orientation of the
sweep cross-section. Combined with profile function
valuer(ui), and twist functionθ(ui), we have local ro-
tation, translation, and scale necessary to position our
tessellation primitive, and generateM1 andM2 for the
considered parameter interval.

Figure 6 shows an example of tessellation achieved us-
ing this technique, using circular section (hence, the display
primitive is a deformed cylinder). One can see that high-
curvature points are handled in a much better way, and that
the overall tessellation is somewhat better than that of fig-
ure 1. The software part of this tessellation only involves
calculus of geometric transformations, and no vertex posi-
tion is explicitly evaluated and transmitted to the 3D card
during the display process. Since the tessellation primitive
is constant throughout the time (only matrix changes from

Figure 6. High quality rendering using vertex
weight. Top-left: close-up on high curvature
points. To be compared with tessellation cre-
ated in Figure 1.

a parameter interval to another), it can be stored in adis-
playlist, usingvertexArraytechnology [2], in order to take
full advantage of graphical data transmission optimizations.

4.3. Comments

A few points are necessary to comment. First, the use of
skinning explains the limitation mentioned in section 2.1,
about the type of generalized cylinders this visualization
technique can handle. It is mentioned above that the tes-
sellation primitive is combined with axial deformations. In
order to achieve this, it is necessary that the cross section did
not change continuously throughout the generalized cylin-
der.

Second, it is also to note that there is no mathematical
proof available that such a deformation tool can properly
handle the classical tessellation problems shown on figure
2. Yet, as one can see on figure 6, the visual results are
significantly improved by this technique.

It is also to note that raising the number of vertices on
the tessellation primitive provides smoother deformation of
it (which is quite natural). Yet, this smoothing involves only
small computation overhead, as such deformation process
is totally performed by hardware. The only overhead is the
one needed by transmission of the tessellation primitive to
the graphic card. This is one of the key points of the next
section.



5. Guaranteed frame-rate

The whole visualization process described above in-
volves two parameters, that makes the visualization more
or less accurate. Naturally, the faster the process, the less
accurate it is. Threshold valueε (see section 3) determines
how many parameter intervals will be used (this number is
at least the number of spline segments on the axisC). The
complexity of the primitive mesh used for tessellation also
determines the quality of the overall shape: the coarser the
primitive is, the coarser the deformation performed by the
3D card is. This complexity can be defined using an integer
n. In our implementation, we actually use several versions
of the same tessellation primitive (in our example, a cylin-
der). The number of polygons on each version is aO(2i)
for i = 0, . . . , n. For a given parameter interval, raising the
number of vertices on the tessellation primitive produces
smoother interpolation, with only a little measured compu-
tation overhead.

The tessellation system is combined with an algorithm
that compares the current framerate to a reference framer-
ate, and adapts automatically theε value, and complexityn
of the primitive used. The global process uses several repre-
sentations of the tessellation primitives, from coarser one to
finest. The principle of the algorithm is fairly simple. Ac-
tually it can be seen as a geometric version of iterative en-
ergy minimization processes [1]: considering the distance
between measured framerate and needed one, tuning func-
tions are applied toε andn. Figure 7 illustrates this.

Figure 7. low quality tessellation (left) and
high quality tessellation (right) obtained us-
ing our automatic frame-rate adaptation sys-
tem. Respectively 900 and 460 frames/sec,
on a GeForce4 based system.

Precisely speaking, the iterations from one display con-
figuration (εk, nk) to the next one(εk+1, nk+1) uses the
following relations:

εk+1 = εk + α.(f0 − fk)
mk+1 = mk + β(εk+1 − εk)

nk+1 = bmk+1c
Wheremk is a floating point version of the integer vari-

ablenk, α andβ are two arbitrary constants,fk is the cur-
rent measured framerate, andf0 the desired one.

In our implementation, we usedα = 10−4 and β =
5. The tessellation process stabilizes itself at the desired
framerate in less than a second.

6. Tests and results

Our test code belongs to a surgical simulator [20]. The
generalized cylinder rendering technique described in this
paper is used for visualizing a virtual intestine, within la-
paroscopic surgery simulation system [13]. For our tests,
we used the simulation scene presented on figure 3, where
the axis shape of the cylinder is determined by physical
simulation, influenced by a virtual small sphere, controlled
by the user. The weight function we used is a piecewise-
polynomial function defined in [5]. Two different configu-
rations have been tested: computer 1 is bi-athlon 2000 using
GeForce4, computer 2 is bi-athlon 1600 using GeForce2mx.
Hardware based technique appears to run significantly bet-
ter on machine 1 (actually 5 times faster according to
our measures), where high quality rendering provides 460
frames per second, and adaptive sampling combined with
automatic frame-rate adaptation allows for a rendering pass
that takes less than a millisecond, providing the user with a
quality similar to that shown on left side of Fig. 6.

7. Conclusion

In this article we presented a global technique for high-
quality, high-performance rendering of highly deformable
generalized cylinders, using both efficient axis sampling
incremental algorithm, and hardware based visualization
technique. We also introduced a self-parameterizing algo-
rithm, that allows a static code to guarantee a given render-
ing speed on any machine, degrading the rendering quality
when needed.
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